
An Efficient Parallel Sorting Algorithm for
Multicore Machines

D.Abhyankar, M.Ingle
School of Computer Science, D.A. University, Indore M.P. India

Abstract— Sorting an array of integers is one of the most basic
problems in Computer Science. Also it is an issue in high
performance database applications. Though literature is
imbued with a variety of sorting algorithms, different
architectures need different optimizations to reduce sorting
time. This paper presents a Multicore ready parallel sorting
algorithm which has been designed with Multicore/Manycore
architecture in mind. Our study shows that the proposed
algorithm is excellent for large input size and multiple free
cores. In essence algorithm has potential to be a success in
situations when one has large input and machine is a
Multicore machine. The paper does not neglect overhead
involved with parallel programming and suggests two system
calls to check the availability of free cores and to reserve a
core for a fixed time quantum.

Keywords— Multicore.

I. INTRODUCTION

There have been abundant computer applications which
need sorting as a key component. Since SQL operations use
it as an internal database subroutine, all database
applications gain advantage of an efficient sorting
algorithm. Also sorting is a must for some rudimentary
database operations like a creation of indices and binary
searches. Sorting is functional in operations like finding
closest pair, determining an element's uniqueness, finding
kth largest element, and identifying membership. Many
practical applications in computational geometry need
sorting. For instance sorting is used to find the convex hull
in computational geometry. Applications that use sorting
include supply chain management, bioinformatics and
computer graphics [13].

Multi-core processors are extensively used across many
application areas including general-purpose, embedded,
network, digital signal processing (DSP), and graphics.
However existing softwares are not able to exploit the
multiple cores available in the machine. This is partly
because of sequential algorithms implemented by existing
software. For instance Libraries of C, C++ and Java
implement variant of Quicksort which is a sequential
sorting algorithm. Designing a Multicore ready or
Manycore ready sorting to exploit multiple cores is one of
the central ideas of the paper. Ofcourse there are other
Multicore ready sorting algorithms but the presented
algorithm is superior to existing Multicore algorithms in
terms of load balancing and space. In addition paper
observes that there are certain situations where it is wise to
drop the idea of parallel sorting. For small input size the
idea of parallel or Multicore sorting should be relinquished.
Proposed algorithm exploits the multiple cores in a better
way because it has excellent load balancing features. Also it
offers a solution that is space efficient for large arrays.

II. LITERATURE SURVEY

Last 50-60 years have produced a surprisingly large
number of sorting algorithms. Focus of this section is on the
algorithms that have the potential to exploit the Multicore
capability skilfully. Quicksort is considered to be one of the
fastest sequential sorting algorithms, but the
implementations which can exploit parallel architectures
efficiently are not feasible because of the load balancing
characteristics of Quicksort especially in the initial stage of
sorting. In contrast parallel Mergesort, parallel Radix sort
and Mapsort are three decent alternatives on Multicore
machines, but they have their problems too. Radix Sort can
also be parallelized effectively, but its performance depends
on the support for handling simultaneous updates to a
memory location within the same SIMD register. Also,
parallel Mergesort and Map sort though achieve good load
balance, but are not in place and demand more memory. On
the other hand proposed algorithm is in place plus it has
excellent load balance. Proposed algorithm is an outcome
of a perfect selection of lower level sequential algorithms
[9, 10, 11, 12, 13, and 14].

III. BACKGROUND

Transistor density has grown steadily in last few years to
meet the rising performance requirements of business
applications, but this increasing density leads to an
extremely sharp increase in power consumption of
processor, which generates tremendous amount of heat.
Though faster processors are one way to improve the
performance, other approaches produce the performance
without any upsurge in the clock speed, power consumption
and heat. Indeed excellent overall performance can be
achieved by reducing the clock speed while increasing the
number of processing units called cores. For instance,
excellent performance can be gained by a shift from single
core to many cores which has an obvious advantage of
keeping the heat considerably low [9].

Since the proposed algorithm is designed for Multicore
architecture a decent understanding of Multicore
architecture will enable us to understand the context in
which proposed algorithm will be relevant. A Multicore
machine is a machine with two or more independent actual
CPUs (called "cores"), which are the units that read and
execute instructions. Cores are integrated onto a single
integrated circuit die (chip multiprocessor), or onto multiple
dies in a single chip package. In many-core machine
number of cores is much larger than what traditional
Multicore machines have. In Manycore machine CPU count
is roughly in the range of several tens; above this range
network on chip technology is more effective [15].

D. Abhyankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1995-1998

1995

The improvement in performance gained by the use of a
multi-core processor depends largely on the software
algorithms used and their implementation. In particular,
possible gains are limited by the fraction of the software
that can be parallelized to run on multiple cores
simultaneously; this effect is described by Amdahl’s law.
Massively parallel problems may realize speedup factors
near the number of cores, or even more if the problem is
split up enough to fit within each core's cache(s), avoiding
use of much slower main memory. Most applications,
however, are not accelerated so much unless programmers
devote a great deal of effort in re-designing the whole
solution. Thus it is crystal clear that parallelization of
software (algorithms) is a significant current topic of
research [15].

Due to power consumption and other reasons,
microprocessors are being built with multiple processors on
chip. Multi-cores are already on most desktops, and number
of cores is expected to increase steeply in the near future.
Computer science research needs to address the multitude
of challenges that we need to face come with this shift to
the Multicore era. Our focus is on developing a sorting
algorithm which can exploit the full potential of Multicore
and Manycore machines. Also we have tried to understand
in which situation Multicore ready sorting algorithm should
be more efficient and where we should prefer to avoid
Multicore ready sorting algorithms.

For an algorithm designer it would be beneficial to
understand some architectural details of Multicore
machines. In Multicore machine at one hand we observe
that CPU's have their own private caches and at the same
time they happen to share a common cache. So an
algorithm needs to achieve decent performance in both
types of caches. If an algorithm designer achieves overlap
in data and code than s/he can achieve excellent shared
cache performance. But achieving excellent shared cache
performance causes the private cache performance to
deteriorate. On the other hand if s/he manages independent
data and code for each core then private chaches will
deliver superior performance but the performance of shared
cache is guaranteed to go down. So an algorithm designer
ought to satisfy competing needs [15].

IV. PROPOSED ALGORITHM

This section formulates a novel Multicore ready sorting
algorithm which has been discussed in subsection 5.1 and
5.2. Subsection 5.1 is an informal outline of the algorithm,
whereas 5.2 treats the algorithm at more formal level.

A. Informal Description Algorithm1 and Algorithm2

Algorithm1
It is assumed that Machine has n free cores. If input

array is small then Program will invoke Heapsort. Avoiding
parallelism for small inputs is an intensely practical idea.
Else it will divide the array in n equal parts and sort them
parallel on n different cores using Heapsort. Repeatedly use
free cores to merge consecutive subarrays using an adaptive
in place merges (Algorithm 2) until there are sub arrays to
merge. Detailed java like psuedocode of the proposed
algorithm is present in subsection 5.2. Algorithm 1 needs
algorithm 2 as a lower level routine. Algorithm 2 is a
variation of merge algorithm used in standard C++.

Algorithm2
Algorithm 2 assumes we have 2 sorted consecutive sub

arrays A and B. If at least one of the A and B is empty
then terminate trivially. A can be divided into two types of
sub arrays A1 and A2. A1 will have elements which do not
involve inversions with elements of B. A2 will have
inversions with elements of B. One of the A1 and A2 may
be empty. In the same way B can be divided into B1 and
B2. B1 will have elements which do not involve inversions
with elements of A. B2 will have inversions with elements
of A. One of the B1 and B2 may be empty. Then Transfer
A2 into B and transfer B2 into A. Restore the sorting order
of transferred elements. Now we have at most two A
components and 2 B components to merge which can be
merged by calling Algorithm 2 on free cores.

B. Formal Description of Algorithm1

Algorithm 1 has been presented using Java like
psuedocode. This psuedocode presentation has been derived
from the multithreaded Java implementation of the
algorithm. Java was a natural choice for implementation
since Java offers multithreading.

class x implements Runnable{
 int[] a; int p; int r;
 public x(int[] b, int p1, int r1)
 {
 a = b;
 p = p1;
 r = r1;
 }
 public void run()
 {
 /* this is expected to run parallel in
favourable circumstances */
 ManyCore1.HeapSort(a,p,r);
 }
}

class M implements Runnable{
 int[] a; int p; int Chunk;
 public M(int[] b, int p1, int Chunk1)
 {
 a = b;
 p = p1;
 Chunk = Chunk1;
 }
 public void run()
 {
 /* expected to run parallel in
favourable circumstances */
 ManyCore1.Merge(a, p, Chunk);
 }
}

public class ManyCore1 {

 private final static Random generator =
new Random();
 public static void Merge1(int[] a,int p,
int Chunk, int r)
 {
 // Already known
 }
 public static void Merge(int[] a, int p,
int Chunk)
 {
 //Already known

D. Abhyankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1995-1998

1996

 }

 public static void MergeRound(int[] a,
int n, int ChunkSize)
 {
 int MergeCount = n/(2*ChunkSize);
 int j = 0; int p = 0;
 Thread[] t = new Thread[MergeCount];
 while(j<MergeCount)
 {
 M ob = new M(a,p,ChunkSize);
 t[j] = new Thread(ob);
 // causes parallel execution
 t[j].start();
 p = p + (2*ChunkSize);
 j++;
 }
 j = 0;
 while(j < MergeCount)
 {
 t[j].join();
 j++;
 }
 p = p - (2*ChunkSize);
 Merge1(a,p,ChunkSize,n-1);

 }
 public static void ParallelMerge(int
a[], int n, int m)
 {
 int ChunkSize = (n/m);
 while(ChunkSize < (n))
 {
 MergeRound(a,n,ChunkSize);
 ChunkSize = ChunkSize*2;
 }

 }
 public static void ManyCoreSort(int[] y,
int n, int m)
 {
 if(n < m)
 {
 InsertionSort(y, 0,n-1);
 return;
 }
 int Chunk = (n/m);
 int p = 0;
 int r = Chunk -1;
 Thread[] t = new Thread[m];
 int i = 0;
 while(i < (m-1))
 {
 x ob = new x(y, p, r);
 t[i] = new Thread(ob);
 t[i].start();
 i++;
 p = p + Chunk;
 r = r+Chunk;
 }
 HeapSort(y,p,n-1);
 i = 0;
 while(i<(m-1))
 {
 t[i].join();
 i++;
 }
 }

}

V. RESULTS

Experiments on parallel sorting have convinced us that
parallel sorting should be used when input size is large, and
when you have enough free CPUs to realize actual
parallelism. To implement the proposed algorithm Java
threads were instrumental. Because Multithreading has
overheads, parallelism on small input will be unable to
outweigh the multithreading overheads. Multithreading for
small input size will almost always be counterproductive. In
our opinion parallelism should be opted where input size is
large and problem has enough inherent parallelism. In
addition to that there are software engineering concerns.
Parallel programs are genuinely complex and are certain to
end up in a code that is not neither compact nor elegant.
Even when problem has inherent parallelism issue is how
many cores or CPU's are free. If there are too few CPUs
free then creating new threads is counterintuitive and
counterproductive. It would have been a lot better situation
if operating system or platform can inform about the
availability of free CPUs and a program can reserve a free
CPU for some fixed time quantum. If Operating system
informs that no free CPU's then a program should avoid
creating new threads. This study proposes two system calls
FreeCPUCount and ReserveCPU. It seems that these
system calls have the enormous potential to reduce the
multithreading overheads.

VI. CONCLUSION

Proposed algorithm invokes Heapsort and in place Merge
algorithm as a lower level routine and that ascertains that
suggested algorithm remains in place. Selected merge
variation is an in place Merge algorithm, which is excellent
at load balancing. It can be observed that often available
cores will be busy in merging. It is easy to see that
performance of private cache of the cores will be excellent
because cores will work on disjoint data sets. The only
concern is the performance of the shared cache because
most of the times core will work on disjoint data sets.
Fortunately only data is disjoint; Code can be shared.
Shared code is one of the salient plus point of the proposed
algorithm. Proposed algorithms avoids multithreading for
small input size, because parallelism on small inputs leads
to the performance which is modest at best. Avoiding
parallelism or multithreading for small input is one of the
pragmatic plus point of the presented algorithm.

For a multithreaded algorithm to be successful it has to
achieve excellent load balancing, excellent private cache
performance and excellent shared cache performance, plus
overall memory demand should be low. In addition to that
an algorithm needs large input size to outweigh the
overheads involved in parallel programming. Moreover at
run time it should have enough free CPUs to exploit the
parallelism of the algorithm. In this light one can see that
the algorithm needs large input and a lot of free cores.
Ultimately performance of any parallel algorithm depends
on the input size and the availability of free cores. The
proposal of system calls FreeCPUCount and ReserveCPU
has the potential to reduce the overheads associated with
parallelism.

D. Abhyankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1995-1998

1997

REFERENCES
[1] D. E. Knuth, The Art of Computer Programming, Vol. 3, Pearson

Education, 1998.
[2] C. A. R. Hoare, "Quicksort" Computer Journal5 (1), 1962, pp. 10-

15.
[3] S. Baase and A. Gelder, Computer Algorithms:Introduction to

Design and Analysis, Addison-Wesley, 2000.
[4] J. L. Bentley, "Programming Pearls: how to sort" Communications

of the ACM, Vol. Issue 4, 1986, pp. 287- ff.
[5] R. Sedgewick, "Implementing quicksort Programs"

Communications of the ACM, Vol. 21, Issue10, 1978, pp. 847-857.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,

Introduction to Algorithms, Second Edition. MIT Press and
McGraw-Hill, 2001.

[7] G. S. Brodal, R. Fagerberg and G. Moruz, "On the adaptiveness of
Quicksort" Journal of Experimental Algorithms ACM, Vol. 12,
Article 3.2, 2008.

[8] N. Wirth, Algorithms and Data Structures, © N. Wirth 1985
(Oberon version: August 2004)

[9] Intel 64 and IA-32 architectures optimization reference manual.
http://www.intel.com/products/processor/manuals.

[10] W. A. Martin, ACM Comp Surv., 3(4):147-174, 1971.
[11] P. Tsigas and Y. Zhang. “A Simple Fast Parallel Implementation of

Quicksort and its Performance Evaluation on SUN Enterprize
10000, “pdp, 00:372, 2003.

[12] H. Inoue, T. Moriyama, H. Komatasu and T. Nakatani, “AA-Sort: A
New Parallel Sorting Algorithm for Multi-Core SIMD Processors”
in PACT 07 pp. 189-198, 2007.

[13] J. Chhugani, W. Macy, A. Baransi, A.D. Nguyen, M. Hagog, S.
Kumar, V. W. Lee, Y. K. Chen, P. Dubey, “Efficient
Implementation of Sorting on Multi-Core SIMD CPU Architecture“
Journal Proceedings of the VLDB Endowment, Volume 1, Issue 2,
August 2008.

[14] M. Edahiro, “Parallelizing fundamental algorithms such as sorting
on multi-core processors for EDA acceleration” Design
Automation Conference, 2009.

[15] V. Ramchandran, “CS398T presentation (PDF file)” on
http://www.cs.utexas.edu/~vlr/.

D. Abhyankar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1995-1998

1998

